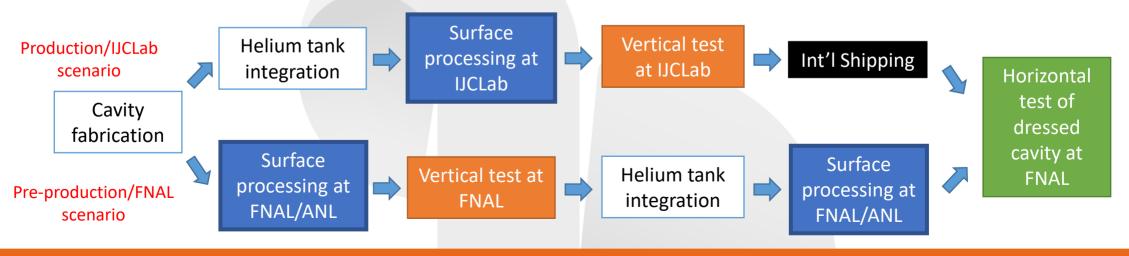


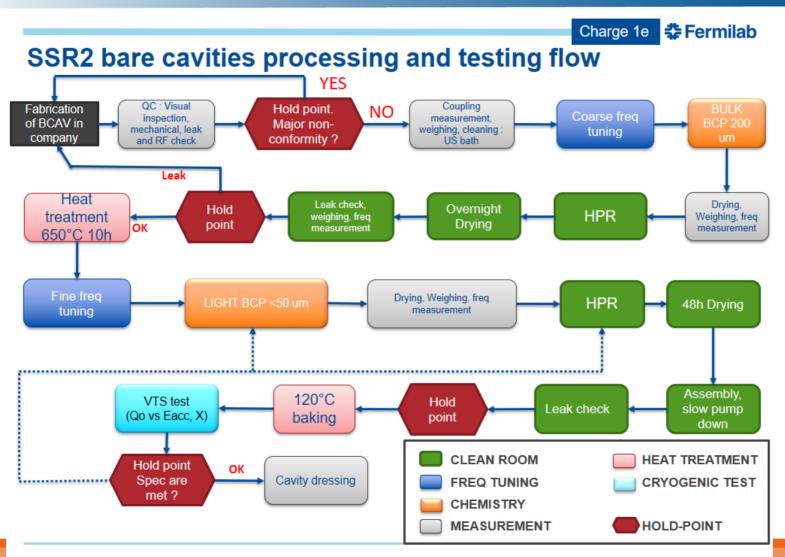
SSR cavity processing plans at FNAL/ANL and IJCLab

Longuevergne David

On behalf of all contributors to PIP-II SSR at IJCLab/FNAL/ANL/DAE


OUTLINE

- Preliminary cavity flow chart for SSR cavity surface processing
- Description and acceptance criteria for specific steps:
 - BCP
 - H-degassing
 - HPR + drying + assembly
 - Frequency tuning
 - Low temperature baking
 - Vertical test
 - Horizontal test


Preliminary cavity flow chart for cavity surface processing

- Base-line flow chart already suggested during FDR of pre-production SSR2 cavity
- Flow charts are aligned between FNAL/ANL and IJCLab even though cavity configuration is different
 - FNAL/ANL => Bare Cavity
 - IJCLab => Jacketed Cavity
- FNAL/ANL flow chart is extended after tank integration but is necessary to fully qualify pre-production cavities.
- IJCLab flow chart is short-cutted but is production-like (no bare cavity processing as no possibilities of dunk test)

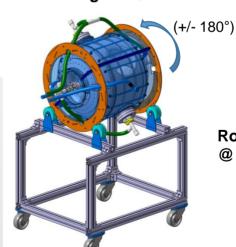
Preliminary cavity flow chart for cavity surface processing

P. Berrutti

BCP treatment

Remove damaged layer from fabrication

REQUIREMENTS	TECHNIQUE	ACCEPTANCE CRITERIA
Average removal	Weighing Ultrasonic probe	Average removal (bulk): 120-180 um Average removal (flash): ~ 25 um
Maximum local removal	Ultrasonic probe	< 400 um
Minimum thickness	Ultrasonic probe	> 3.75 mm
Acid bath/cavity cooling	Temperature monitoring	< 15°C
Defect free surface	Optical inspection (endoscop)	No visible defects
No leak	Leak detection	< 10 ^E -10 mbar.l.s ⁻¹


 Rotational BCP: improve homogeneity of material removal, avoid appearance of surface defects: grooves, white drips, ...

OLUTE MACE

Etching lab @ IJCLab

Etching lab @ ANL

Rotational BCP for SSR2

@ IJCLab

H-Degassing

- Degas hydrogen out from Niobium.
- Release material stress

REQUIREMENTS	TECHNIQUE	ACCEPTANCE CRITERIA
Heat above 600°C during 10h	Temperature monitoring	Temperature cycle is normal
Degas hydrogen	RGA scan	Observe degassing peak of H H Partial Pressure decreased of
Limit mechanical stress	Heating steps Heating ramp	Hold 1h at 300°C dT/dt < 2°C/min
No pollution with hydro-carbons	RGA scan	HC Partial Pressure below ??
Defect free	Optical inspection (endoscop)	No visible defects
No leak (RF and helium volume)	Leak detection	< 10 ^E -10 mbar.l.s ⁻¹

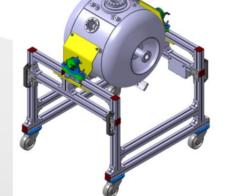
- Remove flash BCP after H-degassing
- Increase temperature to foster re-cristallization (800°C)?

Furnace @ IJCLab

Furnace @ FNAL



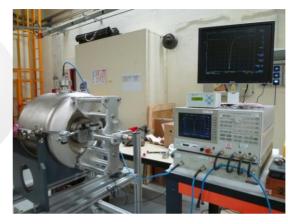
- HPR + drying + assembly
 - Remove any surface pollution from the surface
 - Required before and after Hydrogen degassing

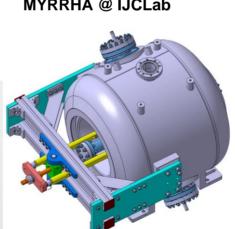

REQUIREMENTS	TECHNIQUE	ACCEPTANCE CRITERIA
Hit all surface with water jet	TBD	Rinsing time > ??h Nozzle translation speed < ?? mm/s
Drying of surfaces before assembly		Drying time > 48h
Maintain cavity cleanliness during assembly	Parts degreasing Particle counting on parts (N2 blowing)	Number of particle below 0.5um : ??
Maintain cavity cleanliness during pump down	Slow pump down	< 1mbar.s ⁻¹ down to 1 mbar

HPR unit @ FNAL

HPR cart for SSR2

@ IJCLab


- Paths for optimization :
 - In-line or sampled Particle monitoring in water during HPR
 - Dynamic drying (heat up cavity before/after assembly?


Frequency tuning

- Reach frequency target
- Measure cavity stiffness

REQUIREMENTS	TECHNIQUE	ACCEPTANCE CRITERIA
Reach frequency target	VNA	Target +/- 30 kHz ??
Evaluate longitudinal stiffness	Force gauge Displacement gauge	< 16 kN/mm
Evaluate tuning sensitivity	VNA Displacement gauge	> 250 kHz/mm

Frequency tuning of MYRRHA @ IJCLab

Frequency tuning of SSR1 @ FNAL

Frequency tuning of SSR2 @ IJCLab

- Low temperature baking
 - Reduce multipacting
 - Improve Q-slope (to be demonstrated)

REQUIREMENTS	TECHNIQUE	ACCEPTANCE CRITERIA
Heat above 120°C during 48h	Temperature monitoring	Temperature cycle is normal
Reduction of H ₂ O partial pressure	RGA scan	$P_{H2Ofinal} = P_{H2Obefore}/10 \ (??)$

LTB set-up @ IJCLab

LTB set-up @ FNAL

- Paths for optimization :
 - No LTB? (not required if no Q-slope at operating gradient and very limited multipacting)

Vertical testing

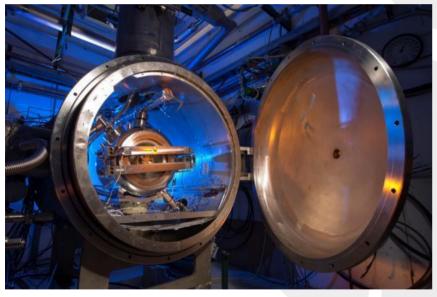
- Validation of cleaning procedure
- Validation of cavity performance

REQUIREMENTS	TECHNIQUE	ACCEPTANCE CRITERIA (jacketed)
Vacuum level before cooling down and at 2K	Vacuum gauge	< 1 ^E -7 mbar
Achieve minimum gradient	RF measurement	13.7 MV/m
Qo at 5 MV (11.5 MV/m)	RF measurement	> 8 ^E 9 (jacketed) > 9 ^E 9 (bare)
Frequency at 2K at 5 MV (11.5 MV/m)	Frequency meter	325 MHz +/- 65 kHz (without tuner) 325 MHz (with tuner)
No field emission at 5 MV	X-rays detector	< 1 uSv/h in beam tube axis
No multipacting up to 5 MV (after RF processing)	RF measurement X-rays detector	Pick-up signal stable < 1 uSv/h in beam tube axis
Sensitivity to Lhe pressure (with tuner)	Frequency meter	< 25 Hz/mbar (with tuner)
Sensitivity to Lorentz forces (with tuner)	Frequency meter RF measurement	< 5 Hz/(MV/m) ² (with tuner)
Field probe level @ 5 MV	RF measurement	300 mW +/- 200 mW

Vertical cryostat @ FNAL

Fermi National Accelerator Laboratory

🕶 🗱 Fermilab


PIP-II SSR2 Cavity, Coupler and Tuner Technical Requirements Specification

Document number: ED0009784, Rev. B

Horizontal testing

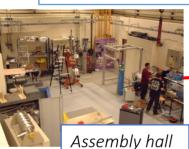
- Validation of cavity performance with HPC and Tuner
- Validation of HPC assembly procedure

Horizontal cryostat @ FNAL

REQUIREMENTS	TECHNIQUE	ACCEPTANCE CRITERIA (jacketed)
Vacuum level before cooling down and at 2K	Vacuum gauge	< 1 ^E -7 mbar
Achieve minimum gradient	RF measurement	13.7 MV/m
Qo at 5 MV (11.5 MV/m)	RF measurement	> 8 ^E 9 (jacketed)
Frequency at 2K at 5 MV (11.5 MV/m)	Frequency meter	325 MHz (with tuner)
No field emission at 5 MV	X-rays detector	< 1 uSv/h in beam tube axis
No multipacting up to 5 MV (after RF processing)	RF measurement X-rays detector	Pick-up signal stable < 1 uSv/h in beam tube axis
Sensitivity to LHe pressure (with tuner)	Frequency meter Pressure gauge	< 25 Hz/mbar
Sensitivity to Lorentz forces (with tuner)	Frequency meter RF measurement	< 5 Hz/(MV/m) ²
Field probe level @ 5 MV	RF measurement	300 mW +/- 200 mW
Operating cavity Q-loaded	VNA	5.05 ^E 6 +/- 25%
Slow tuner frequency range	Frequency meter	> 130 kHz
Fast tuner frequency range	Frequency meter	> 700 Hz
Hysteresis	Frequency meter	< ?? Hz

Conclusion

- Preliminary cavity flow chart has been developed jointly for SSR2 FDR
 - Same flow chart should be applied by all involved partners.
 - Some differences can exist in procedures because of cavity configuration (bare/jacketed) and facilities.
- Acceptance criteria for each step should be jointly defined
 - A preliminary list is suggested and should be finalized before delivery of preproduction cavities.
 - The flow chart and acceptance criteria have to be updated/adapted during preproduction phase and finalized to be validated at FDR of production cavities.
 - Some paths of optimization have been identified and will be investigated on pre-production cavities.


BACK-UP SLIDES

Processing capabilities at IJCLab: SUPRATECH Platform

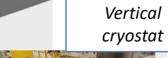
Vacuum furnace

Chemical etching lab (BCP only)

03

ISO 4 clean room

Helium liquefier



- GXRD
- SIMS
- Confocal microscope
- SEM (EDS, EBSD)
- SEY measurement

- RRR measurement (Supratech)
- Conductivity (Supratech)
- TEM (Jannus Platform)

Processing capabilities at IJCLab: SUPRATECH Platform

US Bath + detergent (cavity + tank)

Deionized water rinsing (cavity + tank)

BCP (cavity)

HPR (cavity)

Drying in clean room (cavity + tank)

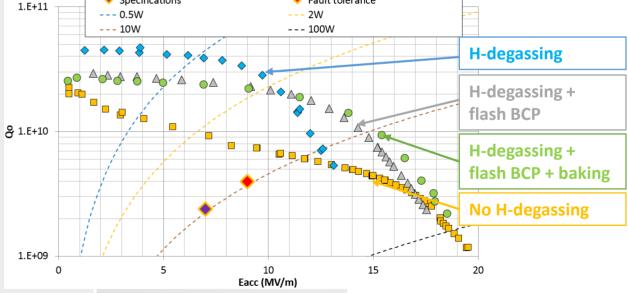
Furnace

Assembly + VT test

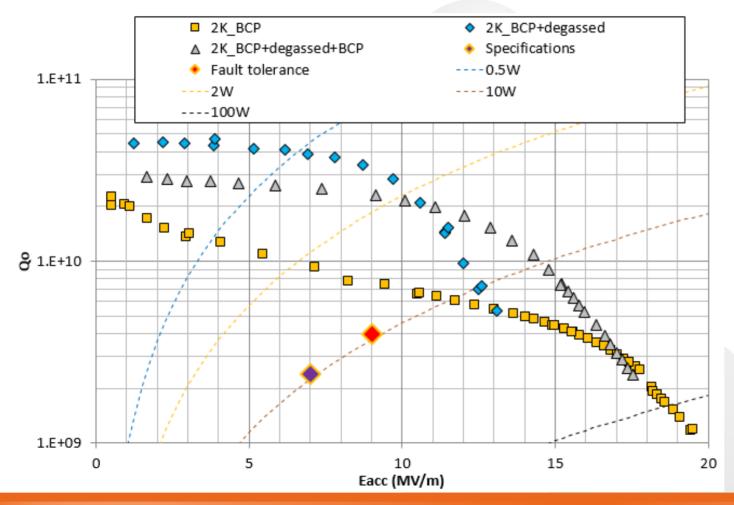
Drying in clean room (cavity + tank)

HPR (cavity)

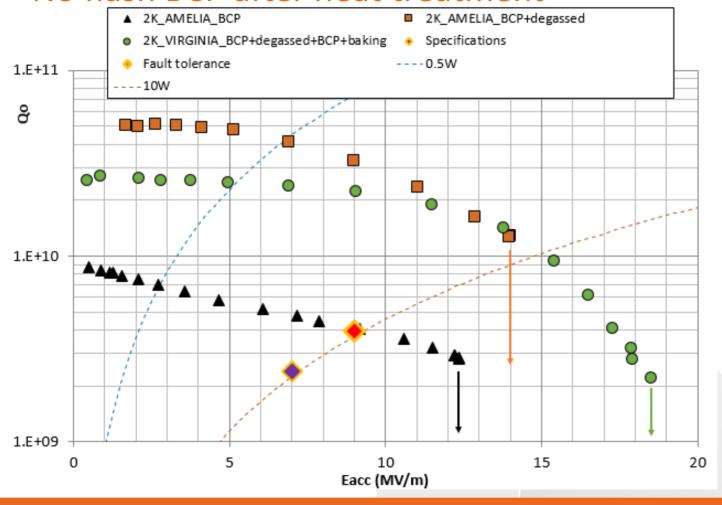
BCP (cavity)


rgne

No flash BCP after heat treatment

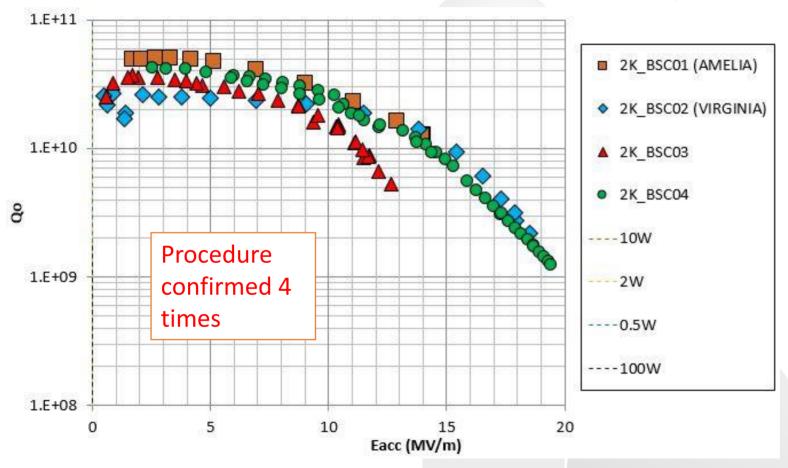


No flash BCP after heat treatment



With Titanium tank + Stainless steel flanges

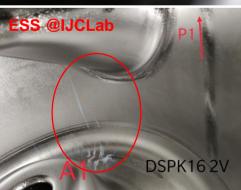
No flash BCP after heat treatment



With Titanium tank + Stainless steel flanges

No flash BCP after heat treatment (except blue diamond)

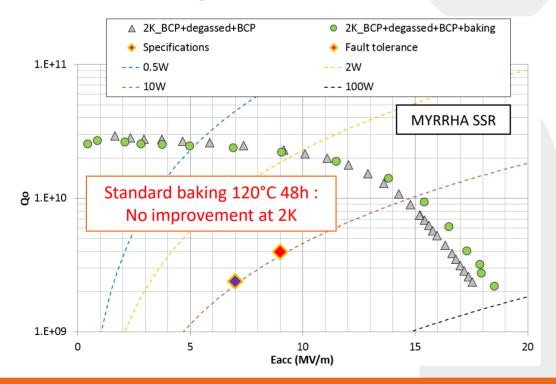

- Better Qo at low field (~ 4^E10)
- Simplification of surface processing (less step => less risks)
- Need to confirm same
 Qo after frequency
 tuning (to be tested
 beginning 2021)



Upgrades for PIP-II: SSR2 prototype cavity processing

1. Improvement of BCP procedure

- How to have a better homogeneity of material removal?
- How to avoid surface traces and white marks (coming from bubbles resting)


- Semi-rotational BCP bench (+/-180°) at ~ 1 rpm
- Allow mixing of BCP mixture during the full process
- Avoid creation of bubbles
- Allow homogeneous water rinsing after acid draining

Upgrades for PIP-II: SSR2 prototype cavity processing

1. Heat treatment

- Validation of MYRRHA procedure: No Flash BCP after Hydrogen degassing (650°C during 10h)
- Standard baking 120°C 48h is not recommended: no benefit on Qo at operational gradient.
- Short baking 120°C 3h is recommended to reduce multipacting if processing is complicated.

